Question 1:
If $ \displaystyle \left( 3\frac{1}{2},\text{ }\frac{1}{2} \right)$ is a solution to the set of simultaneous equations $ax+by=9$ and ${{x}^{2}}+8a{{y}^{2}}+19=20x+2ay$ find the values of $a$ and of $b$ and then find the other solution to the simultaneous equations.
Question 2:
If $(-1,2)$ is
a solution of the simultaneous equations, solve
$ \begin{align}
3y+ax&=b \\
{{y}^{2}}+4bxy+3a&=0 \\
\end{align}$
3y+ax&=b \\
{{y}^{2}}+4bxy+3a&=0 \\
\end{align}$
(i) Find the values of $a$ and of $b$
(ii)Find also the other solution.
(ii)Find also the other solution.
Question 3:
Given that $(1,p)$
$ \displaystyle \begin{align}
& 5x+3y+7\text{ }=0 \\
& 3{{y}^{2}}={{x}^{2}}-4y+3
\end{align}$
& 5x+3y+7\text{ }=0 \\
& 3{{y}^{2}}={{x}^{2}}-4y+3
\end{align}$